No Image

Реостат в электрической цепи схема

СОДЕРЖАНИЕ
1 просмотров
11 марта 2020

Устройство, с помощью которого происходит изменение сопротивления, называется реостатом. Он может состоять из набора резисторов, подключаемых ступенчато, либо иметь практически непрерывное изменение сопротивления. Существуют приборы позволяющие производить плавную регулировку без разрыва сети. Так как сила тока цепи зависит от напряжения источника и сопротивления, меняя количество подключенных секций реостата, можно косвенно влиять на все основные параметры электрического контура.

Назначение реостатов

По своему назначению реостаты делятся на следующие виды:

  • пусковые, служащие для снижения пускового тока при запуске электродвигателя;
  • пускорегулирующие, использующиеся преимущественно в двигателях постоянного тока, а также при переменном напряжении в случае асинхронного электродвигателя с фазным ротором;
  • нагрузочные, создающие сопротивление в электрической цепи;
  • балластные, необходимые для поглощения излишков энергии, возникающей например при торможении электродвигателя.

Реостаты применяются и для ограничения тока в обмотке возбуждения электрических машин постоянного тока. Благодаря этому получается добиться снижения скачков электрического тока и динамических перегрузок, способных повредить как сам привод, так и подключенный к нему механизм. Применение сопротивления при пуске продлевает срок службы щеток и коллектора.

Особым видом реостатов является потенциометр. Это делитель напряжения, в основании которого лежит переменный резистор. Благодаря ему в электронных схемах можно использовать различные напряжения, не используя дополнительные трансформаторы или блоки питания. Регулировка силы тока при помощи реостата широко используется в радиотехнике, например, для изменения громкости звучания динамика.

Принцип действия

Принцип действия всех реостатов схож. Наиболее простую конструкцию и визуально понятный принцип действия имеет ползунковый реостат. Подключение в цепь его происходит через нижнюю и верхнюю клеммы. Конструкция выполнена таким образом, что ток проходит не поперек витков, а через всю длину провода, выбранную ползунком. Это происходит благодаря надежной изоляции между проводниками.

В большинстве положений бегунка задействована лишь часть реостата. При этом изменение длины проводника приводит к регулированию силы тока в цепи. Для уменьшения износа витков ползунок имеет скользящий контакт, часто выполняемый из графитного стержня либо колесика.

Реостат имеет возможность работать в режиме потенциометра. Для этого, выполняя подключение, необходимо задействовать все три клеммы. Две нижние используются в качестве входа. Они подключаются к источнику напряжения. Верхняя и одна из нижних клемм являются выходом. При перемещении ползунка напряжение межу ними регулируется.

Помимо потенциометра возможен и балластный режим работы реостата, когда необходимо создать активную нагрузку для потребления энергии. При этом необходимо учитывать какие рассеивающие способности имеет аппарат. Избыточное тепло может вывести прибор из строя, поэтому рекомендуется производить включение реостата в сеть, предварительно выполнив расчет по рассеиваемой мощности и в случае необходимости обеспечить достаточное охлаждение.

Виды реостатов

Популярным видом реостатов, применяемых в промышленности и электротранспорте, например, трамваях, является устройство, выполненное в виде тора. Регулирование происходит при вращении ползунка вокруг своей оси. При этом он скользит по обмоткам, расположенным тороидально.

Реостат в виде тора меняет сопротивления практически не создавая разрыва в цепи. В полную противоположность ему выступает рычажный вид. Резисторы расположены на специальной раме, и их выбор происходит при помощи рычага. Любая коммутация сопровождается разрывом контура. Помимо этого в схемах с рычажным реостатом отсутствует возможность плавного регулирования сопротивления. Все переключения приводят к ступенчатым изменениям параметров сети. Дискретность шагов зависит от количества резисторов на раме и диапазона регулирования.

Как и рычажные, штепсельные реостаты регулируют сопротивление ступенчато. Отличительной особенностью является изменение параметров сети без разрыва цепи. При нахождении штепселя в перемычке, большая часть тока идет вне сопротивления. Количество возможных вариантов включения зависит от размера магазина. Вытаскиванием штепселя происходит перенаправление тока в резистор.

К специфичным видам можно отнести ламповые устройства и жидкостные реостаты. В связи с рядом недостатков данные приборы не нашли широкого распространения. Жидкостные реостаты можно встретить лишь в взрывоопасной среде, где они выполняют функции управления двигателем. Ламповые можно встретить в лабораториях и на уроках физики, так как их надежность и точность недостаточны для повсеместного использования.

Конструктивные особенности

По материалу изготовления разделяют реостаты:

  • металлические, получившие наибольшее распространение;
  • керамические, наиболее часто используемые при небольших мощностях;
  • угольные, до сих пор используемые в промышленности;
  • жидкостные, обеспечивающие максимально плавное регулирование.

Отвод тепла может быть как воздушным, так и водяным или масляным. Жидкостное охлаждение применяется при невозможности рассеять тепло с поверхности резистора. Для повышения теплоотдачи может использоваться радиатор с вентилятором.

Датчики, основанные на реостатах

Между положением ползунка реостата, его сопротивлением, силой тока в цепи и напряжением существуют прямые зависимости. Эти особенности лежат в основе датчика угла поворота. Каждому положению ротора в таком устройстве соответствует определенная электрическая величина.

Постепенно такие датчики вытесняются магнитными и оптическими аппаратами. Связанно это с тем что характеристика зависимости угла и сопротивления, помехонеустойчива от влияния температурного воздействия. Также свою долю в вытеснение реостатных датчиков вносит переход к цифровым системам. Резистивные измерители можно встретить только в схемах, использующих аналоговые сигналы.

Реостат печки отопления салона

Понять о том, что неисправен реостат печки отопления салона можно по следующим признакам:

  • салон не прогревается, несмотря на то, что температура двигателя достигла номинала;
  • печка не включается в одном или нескольких режимах;
  • блок реостатов при прозвонке мультиметром показывает значения близкие к короткому замыканию либо обрыву.

Частой неисправностью реостата бывает выход из строя термопредохранителя. При этом печка может включаться только в одном из режимов. Менять полностью весь блок нет необходимости, достаточно перепаять новый предохранитель, с такими же номинальными параметрами.

Электрические реостаты нашли широкое применение в промышленности, технике и автомобилях. Сопротивления используются и для пуска электродвигателей, и в радиотехнике, и в качестве активной нагрузки. Выход из строя резистора способен сделать неработоспособной всю схему в которую он входит.

Читайте также:  Белевская пастила срок хранения

В предыдущей статье мы подробно рассмотрели что такое потенциометр. Данная статья является продолжением этой темы и здесь мы рассмотрим что такое реостат, реостат как регулятор тока и рассмотрим тип реостат — слайдер.

Описание и принцип работы

До сих пор мы видели, что переменный резистор может быть сконфигурирован для работы в качестве цепи делителя напряжения, которому присваивается название потенциометра . Но мы также можем настроить переменный резистор для регулирования тока, и этот тип конфигурации широко известен как реостат.

Реостаты — это двухполюсные переменные резисторы, которые настроены на использование только одного концевого контакта и только контакта стеклоочистителя. Неиспользуемая концевая клемма может быть либо оставлена ​​неподключенной, либо подключена напрямую к стеклоочистителю. Это устройства с проволочной обмоткой, которые содержат плотные витки эмалированной проволоки для тяжелых условий эксплуатации, которые изменяют сопротивление ступенчато. Изменяя положение стеклоочистителя на резистивном элементе, величина сопротивления может быть увеличена или уменьшена, тем самым управляя величиной тока. Большой выбор реостатов вы найдете на Алиэкспресс, переходите и покупайте любой.

Затем реостат используется для управления током путем изменения значения его сопротивления, превращая его в настоящий переменный резистор. Классический пример использования реостата — это управление скоростью модельного набора поездов или Scalextric, где величина тока, проходящего через реостат, регулируется законом Ома. Тогда реостаты определяются не только их резистивными значениями, но также и их возможностями по управлению мощностью как P = I 2 * R.

Реостат как регулятор тока

На приведенной выше схеме эффективное сопротивление реостата находится между контактом 3 концевого зажима и контактом стеклоочистителя на контакте 2. Если контакт 1 не подключен, сопротивление цепи между контактом 1 и контактом 2 разомкнуто и не оказывает влияния на величину тока нагрузки. И наоборот, если контакт 1 и контакт 2 соединены вместе, то эта часть резистивной дорожки замкнута накоротко и снова не влияет на значение тока нагрузки.

Поскольку реостаты контролируют ток, то по определению они должны быть соответствующим образом рассчитаны на то, чтобы выдерживать этот постоянный ток нагрузки. Потенциометр с тремя контактами можно настроить как реостат с двумя контактами, но резистивная дорожка на основе углерода может не выдержать ток нагрузки. Также контакт стеклоочистителя потенциометра обычно является самой слабой точкой, поэтому лучше всего проводить через стеклоочиститель как можно меньше тока.

Однако обратите внимание, что реостат не подходит для управления током нагрузки, если сопротивление нагрузки, R L , намного выше, чем полное значение сопротивления реостата. Это R L >> R RHEO . Резистивное значение сопротивления нагрузки должно быть намного ниже, чем у реостата, чтобы ток нагрузки мог протекать.

Обычно реостаты представляют собой высокомощные электромеханические переменные резисторы, используемые для силовых применений, и резистивный элемент которые обычно изготавливается из толстого резистивного провода, подходящего для обеспечения максимального тока I, когда его сопротивление R минимально.

Проволочные реостаты в основном используются в приложениях управления мощностью, таких как схемы управления лампами, нагревателями или двигателями, для регулирования полевых токов для управления скоростью или пусковым током двигателей постоянного тока и т.д. Существует много типов реостатов, но наиболее распространенными являются вращающиеся тороидальные типы, которые используют открытую конструкцию для охлаждения, но также доступны закрытые типы.

Слайдер реостат

Имеются также реостаты с трубчатыми слайдерами, которые можно найти в физических лабораториях и лабораториях в школах и колледжах. Эти линейные или скользящие типы используют резистивный провод, намотанный на изолирующий трубчатый формирователь или цилиндр. Скользящий контакт (штифт 2), установленный выше, регулируется вручную влево или вправо для увеличения или уменьшения эффективного сопротивления реостата, как показано на рисунке.

Как и в случае с вращающимися потенциометрами, также доступны ползунковые реостаты многоканального типа. В некоторых типах постоянные электрические соединения сделаны с резистивным проводом, чтобы дать фиксированное значение сопротивления между любыми двумя терминалами. Такие промежуточные соединения обычно известны как «ответвления», то же имя, что и используемые на трансформаторах.

Линейные или логарифмические потенциометры

Наиболее популярным типом переменного резистора и потенциометра является линейный тип или линейный конус, значение сопротивления которого на выводе 2 изменяется линейно при регулировке, создавая характеристическую кривую, которая представляет собой прямую линию. То есть резистивная дорожка имеет одинаковое изменение сопротивления на угол поворота по всей длине дорожки.

Таким образом, если стеклоочиститель вращается на 20% от его общего хода, то его сопротивление составляет 20% от максимального или минимального. Это происходит главным образом потому, что их резистивные дорожки выполнены из углеродных композитов, металлокерамических сплавов или материалов типа проводящих пластиков, которые имеют линейную характеристику по всей длине.

Но резистивный элемент потенциометра не всегда может давать прямолинейную характеристику или иметь линейное изменение сопротивления во всем диапазоне хода при регулировке стеклоочистителя, но вместо этого может вызывать то, что называется логарифмическим изменением сопротивления.

Логарифмические потенциометры являются в основном очень популярными нелинейными или непропорциональными типами потенциометров, сопротивление которых изменяется логарифмически. Логарифмические потенциометры обычно используются в качестве регуляторов громкости и усиления в аудиоприложениях, где затухание изменяется как логарифмическое отношение в децибелах. Это связано с тем, что чувствительность к уровню звука человеческого уха имеет логарифмический отклик и, следовательно, является нелинейной.

Если бы мы использовали линейный потенциометр для управления громкостью, у ухо бы создалось впечатление, что большая часть регулировки громкости ограничена одним концом дорожки горшка. Тем не менее, логарифмический потенциометр создает впечатление более равномерной и сбалансированной регулировки громкости при полном вращении регулятора громкости.

Читайте также:  Как пришить шторную ленту к вуали видео

Таким образом, работа логарифмических потенциометров при настройке заключается в создании выходного сигнала, который близко соответствует нелинейной чувствительности человеческого уха, при которой уровень громкости звучит так, как будто он линейно увеличивается. Однако некоторые более дешевые логарифмические потенциометры являются скорее экспоненциальными в изменениях сопротивления, чем логарифмическими, но все еще называют логарифмическими, потому что их резистивный отклик является линейным в логарифмическом масштабе. Наряду с логарифмическими потенциометрами существуют также антилогарифмические потенциометры, в которых их сопротивление сначала быстро увеличивается, но затем выравнивается.

Все потенциометры и реостаты доступны в виде различных резистивных дорожек или схем, известных как законы, линейные, логарифмические или антилогарифмические. Эти термины более сокращенно обозначаются как lin , log и anti-log соответственно.

Лучший способ определить тип или закон конкретного потенциометра — установить ось вала в центр его перемещения, то есть примерно на половину, а затем измерить сопротивление на каждой половине от стеклоочистителя до концевой клеммы. Если каждая половина имеет более или менее равное сопротивление, то это линейный потенциометр. Если сопротивление, кажется, разделено примерно на 90% в одну сторону и 10% в другую, то есть вероятность, что это логарифмический потенциометр.

Тимеркаев Борис — 68-летний доктор физико-математических наук, профессор из России. Он является заведующим кафедрой общей физики в Казанском национальном исследовательском техническом университете имени А. Н. ТУПОЛЕВА — КАИ

Значениями силы тока и напряжения можно управлять при помощи специального простого устройства, которое было разработано Иоганном Христианом Поггендорфом. Оно называется реостатом, или переменным резистором. Для того чтобы разобраться в принципе действия устройства, необходимо рассмотреть зависимость тока и напряжения от величины сопротивления.

Общие сведения

Электрическим током называется движение свободных заряженных частиц под воздействием электромагнитного поля. Любое вещество состоит из атомов, которые образуют кристаллическую решетку при помощи ковалентных связей. При протекании электрического тока по проводнику происходит взаимодействие его частиц с узлами кристаллической решетки. Носители заряда обладают кинетической энергией (Ek), которая зависит от массы частицы (m) и ее скорости (V3). Она определяется по формуле: Ek = m * sqr (V3) / 2.

При столкновении частиц с узлами кристаллической решетки происходит полная или частичная передача энергии атому.

Однако энергетический потенциал свободного носителя заряда восстанавливается, поскольку на него постоянно воздействует электромагнитное поле. Процесс взаимодействия частиц с атомами повторяется определенное количество раз, пока не прекратится воздействие электромагнитного поля или частица не пройдет полностью через проводник. Это физическое явление называется электрическим сопротивлением или проводимостью. Последняя величина является обратной сопротивлению. Сопротивление обозначается литерой «R», а проводимость — «G».

Единицей измерения сопротивления является Ом. Рассчитывается при помощи определенных формул или измеряется электронно-измерительным прибором, который называется омметром.

Физическая зависимость

Величина R зависит от количества свободных носителей заряда, число которых определяется исходя из электронной формулы вещества. Ее можно определить из периодической таблицы химических элементов Д. И. Менделеева. Вещества классифицируются по проводимости следующим образом: проводники, полупроводники и изоляторы (непроводники).

К проводникам относятся все металлы, электролиты и ионизированные газы.

В металлах носителями заряда являются свободные электроны, в электролитах — анионы и катионы, а в ионизированных газах — электроны и ионы. Полупроводники способны проводить электрический ток при определенных условиях. В полупроводниках свободные электроны и дырки являются носителями заряда. Изоляторы или диэлектрики не способны проводить электричество, поскольку в их структуре вообще отсутствуют свободные носители заряда.

Величина, определяющая тип материала и способность его к проводимости, называется удельным сопротивлением (p). Существует и обратная величина относительно удельного сопротивления. Она называется удельной проводимостью (σ) и связана с p следующей формулой: p = 1 / σ. При выполнении расчетов необходимо учитывать зависимость электрического сопротивления материала и от других физических величин или факторов, к которым относятся следующие:

  • геометрические составляющие;
  • электрические величины;
  • температурные показатели.

Эти три группы факторов необходимо учитывать при изготовлении реостатов, резисторов и других элементов резистивной нагрузки. Во время ремонта и проектирования устройств следует также рассматривать все факторы, поскольку неверные расчеты могут привести к выходу радиоаппаратуры из строя.

Геометрия материала

К геометрии проводника (полупроводника) относятся его длина (L) и площадь поперечного сечения (S). Величину S можно вычислить по абстрактному алгоритму, который подойдет для всех форм проводников и полупроводников. Он имеет следующий вид:

  1. Визуально определить форму фигуры поперечного сечения (окружность, прямоугольник или квадрат).
  2. Найти в справочной литературе или интернете формулу поиска площади поперечного сечения фигуры.
  3. Измерить необходимые геометрические параметры (например, диаметр) и подставить их в формулу.
  4. Произвести математические вычисления.

Если проводник является многожильным (состоит из множества проводников), то следует вычислить площадь сечения одного проводника, а затем произвести ее умножение на количество проводников. Исходя из всего, можно вывести зависимость величины сопротивления от типа вещества, длины и площади сечения проводника: R = p * L / S.

Физический смысл зависимости следующий: электрический ток движется по проводнику, тип которого определяется параметром р, и его частицы проходят через определенную длину L с сечением S (при малой площади сечения происходят более частые столкновения электронов с узлами кристаллической решетки).

Однако геометрические параметры — не единственные факторы, влияющие на значение проводимости материала.

Влияние параметров электричества

Для того чтобы учитывать влияние силы тока и напряжения на R, следует обратить внимание на закон Ома. У него существует две формулировки, применяемые для расчетов: для полной цепи или ее участка. Закон Ома для полной цепи показывает зависимость величины тока (i) от электродвижущей силы (e) и величины R, состоящей из суммы внутреннего (Rвнут) и внешнего (Rвнеш) сопротивлений.

Переменная Rвнут является внутренним сопротивлением источника питания (генератора, аккумулятора, трансформатора и т. д. ). Rвнеш — сопротивление всех потребителей электрической энергии и соединительных проводов. Закон Ома для полной цепи связывает все эти величины таким соотношением: i = e / (Rвнеш + Rвнут). Величина Rвнеш определяется по формуле: Rвнеш = (e / i) — Rвнут.

Читайте также:  Куда деть яблоки большой урожай

Для участка цепи соотношение для нахождения сопротивления упрощено, поскольку не учитывается ЭДС и Rвнут. Этот закон показывает прямо пропорциональную зависимость силы тока (I) от напряжения (U), а также обратно пропорциональную от величины сопротивления R: I = U / R. В некоторых случаях для точных вычислений этих факторов может быть недостаточно, поскольку существует еще одна зависимость — температурные показатели материала.

Влияние температуры на проводимость

Удельное сопротивление влияет на проводимость материала, однако оно зависит от температуры. Для доказательства этой гипотезы нужно собрать электрическую цепь, состоящую из следующих компонентов: лампы накаливания, источника питания (12 В), куска нихромовой проволоки и амперметра. Источник питания можно подобрать любой.

Важно чтобы величина напряжения не была выше, чем номинальное значение разности потенциалов лампы, т. е. аккумулятор 12 В, и лампа тоже должна быть на 12 В. Элементы цепи соединяются последовательно. Кусок проволоки рекомендуется разместить на огнеупорном кирпиче, поскольку, при протекании электротока через нихром, произойдет его нагревание.

Амперметр нужен для мониторинга значений силы тока, которые будут изменяться с течением времени. Лампа является световым «сигнализатором», позволяющим визуально наблюдать за увеличением сопротивления. Яркость ее свечения будет постепенно угасать. При протекании тока по цепи происходит визуальное подтверждение закона Ома для участка цепи. При увеличении R ток уменьшается. Зависимость удельного сопротивления р зависит от следующих переменных величин:

  1. Табличного значения удельного сопротивления (р0), рассчитанного при температуре +20 градусов по шкале Цельсия.
  2. Температурного коэффициента «а», который для металлов считается больше 0 (а > 0), а для электролитов — меньше 0 (a Переменный резистор

Очень часто возникает необходимость изменять величину тока и напряжения при помощи изменения номинала резистора. Выполнить эту задачу поможет простой радиоэлемент, который называется реостатом. Он широко применяется для регулировки уровня громкости, увеличения напряжения на лабораторном источнике питания и т. д. Переменные резисторы, применяемые в радиотехнике, отличаются от лабораторных конструкциий. Однако принцип действия этих радиоэлементов одинаков. Части устройства очень похожи по своему предназначению. Например, ползунковый механизм, который применяется для регулировки тока.

Виды и устройство реостатов

Реостаты классифицируются по устройству и способу применения. По устройству реостаты делятся на 4 типа: проволочный, ползунковый, жидкостный и ламповый. Первый тип переменного резистора состоит из проволоки (материала с высоким удельным сопротивлением) и корпуса-изолятора. Проволочный проводник проходит через контакты, при соединении с которыми можно получить необходимую величину сопротивления.

Ползунковый реостат состоит тоже из проволоки с высоким удельным сопротивлением, корпуса-диэлектрика (на него она намотана) и ползунка. При передвижении ползунка происходит уменьшение или увеличение величины электросопротивления. Устройство применяется в лабораториях при проектировании различных электрических приборов, а также для проведения опытов в области физики или химии. Кроме того, модернизированная версия применяется в различной радиоаппаратуре.

Не слишком распространенным типом является модель жидкостного переменного резистора. Она имеет следующее строение: бак с электролитическим раствором и подвижные электроды.

Если уменьшить расстояние между пластинами-электродами, то произойдет уменьшение электрического сопротивления.

Реостат бывает еще и ламповым. Он включает в свой состав набор ламп накаливания, которые соединены параллельно. Если изменить количество включенных ламп, то можно изменить его сопротивление. Однако устройство имеет один существенный недостаток: зависимость величины электрической проводимости от температуры нитей накаливания. По способу применения переменные резисторы следует классифицировать таким образом:

  • пусковые;
  • пускорегулирующие;
  • балластные;
  • для возбуждения;
  • потенциометры.

Первый тип предназначен для плавного запуска электродвигателей. Пускорегулирующие переменные резисторы позволяют плавно запускать электрические двигатели постоянного тока, а также поддерживают регулировку величины силы тока. Балластные следует применять в электрических цепях для регулировки нагрузочной способности генератора электроэнергии. Они создают необходимую величину сопротивления в сети. Реостаты возбуждения используют в электрических машинах для поглощения лишней энергии.

Потенциометр предназначен для регулировки величины напряжения. Реостат устроен следующим образом: три клеммы позволяют получить от источника питания с фиксированным значением напряжения разные значения его величины. Например, понижающий трансформатор со значением напряжения на вторичной обмотке, равным 36 В. При использовании 2 транзисторов, диодного моста и реостата можно получить ряд напряжений от 0 до 34 В (2 В — потери при выпрямлении диодным мостом). Эта особенность позволяет делать и выпускать универсальные делители напряжения.

Схема и принцип работы

Обозначение реостата на схеме осуществляется в виде обыкновенного резистора, но со стрелкой, показывающей непостоянное значения сопротивления радиокомпонента. Принцип работы реостата довольно простой и основан на зависимости величины силы тока от величины сопротивления. Проводник, который находится на корпусе-изоляторе, подключен в электрическую цепь.

Ползунок — часть реостата, которая соединена с одним его выводом. При перемещении ползунка происходит регулирование значений тока или напряжения.

Реостат может выглядеть, как корпус-изолятор, из которого выведен специальный регулятор величины сопротивления. Однако некоторые модели, которые применяются в лабораториях, могут быть открытого типа. Они предназначены для демонстрации принципа действия устройства.

Электроток протекает по пути наименьшего сопротивления. Следовательно, ползунком можно регулировать протекание тока. Если проводник (материал с высоким удельным сопротивлением) задействован полностью, то, значит, и величина сопротивления будет максимальной. В случае, когда ползунок находится посередине проводника, сопротивление реостата равно R / 2. Подключение в электрическую цепь потенциометра, как и любого типа реостата, осуществляется последовательно.

Таким образом, реостат широко применяется в электрических схемах и позволяет регулировать значения тока и напряжения.

Комментировать
1 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Строительство
0 комментариев
No Image Строительство
0 комментариев
No Image Строительство
0 комментариев
No Image Строительство
0 комментариев
Adblock detector