No Image

Схема обвязки насосов трубопроводами

СОДЕРЖАНИЕ
0 просмотров
11 марта 2020

Обвязка — насос

Обвязка насосов на НПС позволяет обеспечивать последовательную и параллельную работу насосов в различном сочетании, прямую и обратную перекачку. [1]

Обвязка насоса выполнена из стальных бесшовных труб диаметром 32 мм. [2]

Обвязка насоса трубопроводами выполняется на фланцевых соединениях. Перед всасывающим и нагнетательным патрубками устанавливаются задвижки. В случае приема жидкости, находящейся ниже оси насоса, для ее удержания во всасывающем трубопроводе после остановки насоса на конце трубопровода устанавливается обратный клапан. На всасывающем трубопроводе устанавливается фильтр из сетки, предотвращающий попадание в полость насоса механических примесей. [3]

Обвязка насосов ( рис. 7 и 8) должна обеспечивать работу насосной станции при выводе в резерв любого из агрегатов. [5]

Обвязка насосов всех перекачивающих станций должна быть такой, при которой отсутствуют тупиковые ответвления даже при отключении того или иного насоса. Это требование выполнимо в том случае, если задвижки, тройники и обратные клапаны будут установлены в непосредственной близости друг к другу. [6]

Обвязка насосов ( рис. 7 и 8) должна обеспечивать работу насосной станции при выводе в резерв любого из агрегатов. [8]

Обвязка насоса со всасывающим и нагнетательным трубопроводами осуществляется на фланцевых соединениях, позволяющих быстро разбирать ее в случае необходимости. Обязательным элементом обвязки насоса являются аадвижки, устанавливаемые перед всасывающим и нагнетательным патрубками, и обратный клапан, монтируемый на нагнетательном трубопроводе. Кроме того, на всасывающем трубопроводе часто устанавливают камеру с фильтром из сетки, который не допускает проникновения в полость насоса комков парафина, щепок и других посторонних предметов. [9]

Обвязка насосов должна обеспечивать работу НПС при выводе в резерв любого из агрегатов станции. Приведенная схема обвязки ( см. рис. 7.5) позволяет осуществлять обратную перекачку нефти из магистрали в резервуарный парк при помощи коллектора и подпорных насосов. [10]

Обвязка насоса трубопроводами выполняется на фланцевых соединениях, позволяющих быстро разбирать ее в случае необходимости. Перед всасывающим и нагнетательным патрубками устанавливаются задвижки. На нагнетательном трубопроводе монтируется обратный клапан. Если прием жидкости находится ниже оси насоса, то для удержания жидкости во всасывающем трубопроводе после остановки насоса на конце трубопровода также необходимо установить обратный клапан. Кроме того, на всасывающем трубопроводе имеется фильтр из сетки, не допускающий попадания в полость насоса комков парафина и посторонних предметов. [11]

Обвязка насосов должна позволять по соответствующим трубопроводам нагнетать или всасывать продукт. [13]

Обвязка насосов должна собираться по утвержденной схеме и техническим условиям. Сборка обвязки — очень ответственная работа, поэтому в целях обеспечения безопасности необходимо, чтобы крупноблочные конструкции обвязки изготовлялись с соблюдением всех требований техники безопасности и выпускалисо стандартные детали. [14]

Обвязка насоса со всасывающим и нагнетательным трубопроводами осуществляется на фланцевых соединениях, позволяющих быстро разбирать ее в случае необходимости. Обязательным элементом обвязки насоса являются задвижки, устанавливаемые перед всасывающим и нагнетательным патрубками, и обратный клапан, монтируемый на нагнетательном трубопроводе. Кроме того, на всасывающем трубопроводе устанавливают камеру с фильтром из сетки, чтобы не допустить попадания в полость насоса комков парафина и других посторонних предметов. [15]

Устройство собственной водопроводной сети зачастую является единственным способом создания достойных условий для жизни в загородном доме. Необходимым условием для этого является наличие водоносной скважины или колодца.

Если вода есть, остается подать ее в дом и подключить к точкам забора.

В зависимости от глубины расположения зеркала воды можно использовать насос поверхностного или погружного типа.

Поверхностный насос работает только при глубине зеркала воды не более 8 метров. Для погружного насоса пределов практически нет. С помощью оборудования этого вида можно поднимать воду из скважин глубиной 300 и более метров.

Для обеспечения правильной работы насосного оборудование необходимо его грамотное с технической точки зрения, подключение к системе водоснабжения. Схемы обвязки скважинного и поверхностного насосов аналогичны, но имеют свои характерные особенности.

Обвязка погружного насоса

Для подключения насоса к системе водоснабжения необходимо следующее оборудование:

  • насос
  • трубы, по которым вода будет подаваться вода
  • крепежный трос, удерживающий насос в толще воды и не позволяющий ему утонуть
  • манометр
  • гидравлический бак
  • устройство защиты от запуска насоса на сухом ходу
  • оборудование для очистки воды (фильтр)

При подключении погружного насоса между ним и водопроводной трубой обязательно устанавливается обратный клапан, препятствующий сходу воды из системы водоснабжения в скважину при выключенном насосе.

Если диаметр выходного штуцера и водопроводной трубы не совпадают, для включения насоса используется переходной ниппель.

На следующем участке трубы устанавливается фильтр. После которого устанавливается реле давления и манометр, с помощью которых осуществляется включение насоса в работу при снижении уровня давления воды в системе водопровода ниже установленного значения.

Каждый элемент обвязки погружного насоса, по сути, является сложным узлом, выход которого из строя приведет к неисправности всей системы водоснабжения. Поэтому на каждом участке дополнительно монтируется запорная арматура, позволяющая не разбирать всю обвязку, а выполнять лишь локальный ремонт, отсоединяя нужный участок системы. Для этого лучше использовать краны типа американка.

Обвязка поверхностного насоса

Обвязка поверхностного насоса выполняется аналогично. Между подающей трубой и заборным штуцером насоса устанавливается обратный клапан, препятствующий сходу воды. Насос монтируется на устойчивое основание. Допускается его установка на промежуточном уровне между поверхностью земли и зеркалом воды. Для этого делается специальное углубление. В этом случае монтаж усложняется, но дополнительным бонусом становится возможность качать воду с большей глубины.

Читайте также:  Общий домовой счетчик на отопление

Вероятно, именно сложность обвязки поверхностного насоса стала причиной разработки насосных станций, применение которых в значительной мере упрощает монтажные работы.

Схема обвязки насосной станции

Насосная станция это система бесперебойного снабжения водой, включающая все необходимые элементы:

  • насос
  • систему автоматического контроля, состоящую из реле давления и манометра
  • фильтр
  • гидроаккумулятор
  • обратный клапан

Остается только подключить ее к источнику воды и к ее потребителям. Единственным недостатком комплекса насосной станции является малый объем гидроаккумулятора. Но с этой проблемой можно справиться, подключив дополнительно еще один мембранный бак.

Насосная станция также устанавливается на прочное основание и при необходимости может быть расположена ниже уровня земли.

Выше был приведен перечень основных технологических узлов, из которых состоит схема современной установки на НПЗ и НХЗ. Рассмотрим теперь основные принципы разработки этих узлов.

Ректификационная колонна. Применяемые на НПЗ и НХЗ рек­тификационные колонны классифицируют по технологическому назначению (стабилизационные, отпарные и т. п.), давлению (ра­ботающие под давлением, атмосферные, вакуумные), способу осу­ществления контакта между паром и жидкостью (тарельчатые, на­сад очные), числу наименований продуктов, получаемых при разде­лении смесей (простые, если это число равно 2, и сложные, если оно больше 2).

Для обеспечения эффективного проведения процесса ректифи­кации необходимо, чтобы с верха колонны на нижележащие тарел­ки непрерывно стекала жидкость (флегма), ас низа колонны вверх поднимались пары. Поэтому часть ректификата после конденсации возвращается в колонну в виде орошения, а часть остатка подогре­вается в выносном подогревателе и возвращается’в колонну в виде паровой или парожидкостной струи.

При проектировании обвязки верхней части колонн использу­ются схемы полной, неполной и парциальной конденсации паров. В качестве конденсаторов применяют аппараты воздушного охлаждения или кожухотрубчатые холодильники, а для сбора дис­тиллята — горизонтальные или вертикальные емкости и сепарато­ры. Для поддержания в колоннах постоянного давления служат схе­мы регулирования: 1) с установкой регулирующего клапана на ос­новном потоке; 2) изменением угла поворота лопастей вентилятора АВО; 3) изменением числа оборотов электродвигателя вентилятора АВО; 4) изменением расхода оборотной воды в кожухотрубчатый конденсатор-холодильник. При неполной конденсации обычно применяются схемы регулирования давления сбросом неконденси­рующихся газов из емкости орошения в топливную сеть.

Для случаев, когда необходимо строго обеспечивать какой-либо параметр качества верхнего продукта колонны, применяются схе­мы регулирования подачи орошения в зависимости от температуры или собственно параметра качества (вязкости, фракционного со­става, плотности и т. д.) на какой-либо из тарелок верхней части колонны (так называемой контрольной тарелке). Если подача теп­лоты в колонну регулируется в зависимости от температуры низа колонны, при обвязке верхней части предусматривается стабилиза­ция подачи орошения.

Если верхний продукт из емкости орошения направляется в ре­зервуары или промежуточную емкость, то регулирование уровня в емкости орошения осуществляется за счет изменения количества откачиваемого продукта. В тех случаях, когда верхний продукт из емкости .орошения подается непосредственно в процесс (печь, ко­лонну и т. д.), используется схема постоянства подачи продукта с коррекцией от уровня в емкости.

Для создания парового потока в нижней части колонн применя­ются испарители с паровым пространством и без парового про­странства, вертикальные и горизонтальные термосифонные испа­рители, трубчатые печи. Преимущества испарителей с паровым пространством состоят в следующем: они имеют высокий коэффи­циент испарения (до 0,8), могут применяться в случаях использова­ния для обогрева загрязненных теплоносителей и теплоносителей, имеющих высокое (> 1,6 МПа) давление, представляют собой дополнительную теоретическую ректификационную тарелку. Недостатки этого вида испарителей — высокая стоимость и громозд­кость.

Преимуществами термосифонных испарителей являются их низкая стоимость и простота обвязки; недостатки этих аппаратов — необходимость тщательно определять при проектировании гидрав­лическое сопротивление системы и следить за ним в процессе экс­плуатации, невысокий (до 0,3) коэффициент испарения. Горизон­тальные термосифонные испарители несколько дороже вертикаль­ных, но могут применяться при использовании загрязненных теп­лоносителей, а также в тех случаях, когда необходимы большие поверхности теплообмена.

Если количество теплоты, подаваемое в низ колонны, должно быть постоянным, а нижний продукт, откачивается с установки, применяются схемы контроля и регулирования, включающие ста­билизацию подачи греющего агента в испаритель и регулирование уровня в испарителе или колонне изменением количества откачи­ваемого продукта. Когда необходимо регулировать подачу теплоты в колонну в зависимости от температуры на контрольной тарелке, применяются схемы регулирования, в которых изменяется количе­ство подаваемого в испаритель теплоносителя. Рекомендуются так­же схемы регулирования подачи теплоносителя в испаритель в за­висимости от параметров качества нижнего продукта. Как пример на рис. 15 приведена схема обвязки отбензинивающей колонны.

При разработке технологической схемы рекомендуется предус­матривать несколько вводов сырья в колонну, поскольку в процессе эксплуатации это позволит учесть колебания состава сырья и ком­пенсировать неточности расчета.

Трубчатая печь.На НПЗи НХЗ с помощью трубчатых печей технологическим потокам сообщается теплота, необходимая для проведения процесса. Трубчатые печи условно разделяются на ре­акторные, подогревательные и рибойлерные. В реакторных печах (установки термического крекинга, пиролиза) осуществляются процессы превращения углеводородов под влиянием высоких тем­ператур. В подогревательных печах сырье нагревается до определенной температуры перед подачей в реактор (установки каталити­ческого крекинга и риформинга, изомеризации, дегидрирования и др.), ректификационную колонну (установки первичной перегон­ки) или другой аппарат. Рибойлерные печи выполняют функции кипятильника (рибойлера) ректификационных колонн — в эти печи сырье поступает с низа колонн и после нагрева возвращается в виде паров или парожидкостной смеси обратно в колонны.

Рис. 15. Принципиальная схема отбензинивающей колонны:

/ — нефть; // — газ; III — бензин на стабилизацию; IV — полуотбешиненная нефть в атмосферную колонну; G — расход; Н — уровень; Р — давление; / — температура; /кк — температура конца кипения; S — стабилизация; С — постоянство; Пр — пусковое реле; Из — измерение

Читайте также:  Камин дровяной со стеклом

Обвязка трубчатой печи зависит от ее конструкции. Существуют различные конструкции печей, отличающиеся способом передачи теплоты (радиантные, конвекционные, радиантно-конвекционные), числом топочных камер, способом сжигания топлива (с пла­менным и беспламенным горением), числом потоков нагреваемого сырья, формой камеры сгорания (цилиндрические, коробчатые и др.), расположением труб змеевика (горизонтальное или верти­кальное).

При обвязке печей необходимо предусматривать откачку и опрес-совку змеевиков, схемы циркуляции жидкого топлива, пропарку пе­чей, подключение пара для ремонтных нужд, паровую защиту печей на случай пожара. Регулирование температуры продукта на выходе из печи может осуществляться изменением подачи жидкого и газообраз­ного топлива. Проекты обвязки печей включают также схемы обвязки горелок, которые зависят от типа применяемой горелки.

На рис. 16 приведена схема обвязки трубчатой печи.

Насосы.В нефтеперерабатывающей и нефтехимической про­мышленности применяются насосы различных типов: лопастные (центробежные и осевые), вихревые и объемные (поршневые, плунжерные, шестеренчатые, винтовые, пластинчатые). В качестве привода в большинстве случаев используется электродвигатель, а в отдельных случаях — паровая турбина.

При проектировании обвязки насосов следует учитывать следующие требования:

1) обвязка насоса основными и вспомогательными трубопрово­дами должна быть такой, чтобы можно было обеспечить удобство и безопасность обслуживания, возможность демонтажа отключен­ного насоса;

Рис. 16. Принципиальная схема обвязки трубчатой печи:

1, 7— клапаны; 2, 3— регуляторы; 4,5 — термопары; б—диафрагмы; 8 — регулирующий клапан

2) для уменьшения гидравлических потерь во всасывающем тру­бопроводе его следует прокладывать по возможности более корот­ким, избегая резких сужений, большого числа поворотов и т. д.; нужно расчетным путем определить минимально допустимую вы­соту столба жидкости на приеме насоса;

3) для предотвращения поломок насоса в пусковой период необхо­димо предусматривать временные фильтры во всасывающей линии;

4) в обвязку центробежных насосов необходимо включать об­ратный клапан, устанавливаемый между нагнетательным патруб­ком и задвижкой; клапан защищает рабочее колесо насоса от гид­равлического удара при остановке насоса; для возможности пуска насоса нужно предусматривать байпасирование обратного клапана;

5) в обвязке поршневых и плунжерных насосов предусматрива­ют предохранительные клапаны между нагревательным патрубком и отключающей задвижкой; сброс от клапана направляют во всасы­вающий трубопровод;

6)в обвязке вихревых насосов предусматривается байпасная линия (с нагнетания во всасывающую линию), которая использует­ся как в пусковой период, так и при нормальной эксплуатации;

7) к площадкам, где устанавливают насосы, подводят трубопро­воды пара, инертного газа, сжатого воздуха для прогрева и продувки насосов и трубопроводов; непосредственно к насосу эти агенты подводят с помощью гибких шлангов или съемных участков, присо­единяемых к специальным штуцерам.

При остановке насосов для осмотра или ремонта их следует осво­бодить от продукта. Проектом должен быть предусмотрен сброс дре­нируемых продуктов в специальные емкости (для легковоспламеняю­щихся, горючих.и токсичных жидкостей) или в канализацию. Если насосами лерекачиваются.едкие жидкости, необходимо после опо­рожнения промыть насосы водой или нейтрализующим агентом.

Особое внимание нужно уделять предотвращению выхода насосов из строя из-за отсутствия жидкости во всасывающем трубопроводе. На емкостях и прочих аппаратах, из которых жидкость забирают насосом, устанавливают регуляторы уровня и независимые от них сигнализаторы максимального и минимального уровня и предусматривают автомати­ческую остановку насоса при достижении минимального уровня.

Наиболее часто применяют на НПЗ и НХЗ центробежные насо­сы с электродвигателями. В цехах и на технологических установках насосы, как правило, устанавливают вне помещения; в общезавод­ском хозяйстве более распространены закрытые насосные. При размещении насосов на открытых площадках (под навесами, эта­жерками, эстакадами) целесообразно учитывать рекомендации, содержащиеся в не являющемся, обязательным документе "ОСТ 26-1141—74. Насосы. Основные требования к установке и эксплуата­ции вне помещений на химических, нефтехимических и нефтепе­рерабатывающих производствах". ,.

Наиболее распространенные схемы обвязки насосов приведены на рис. 17.

а бв г

Рис. 17. Схемы обвязки насосов

а — пропариваемые; б — продуваемые инертным газом; в — продуваемые и пропарива­емые; г — продуваемые и промываемые; / — пар; // — инертный газ; III — вода; IV — дренаж нефтепродукта; V — сброс в промканализацию

Поскольку средний и капитальный ремонты насосов в холодное время года проводят только в ремонтных цехах и мастерских, в открытых насосных предусматривают обязательное резервирова­ние рабочих насосов. В резервных насосах необходимо поддержи­вать температуру, близкую к температуре перекачиваемого продук­та. С этой целью организуют непрерывную циркуляцию через ре­зервный насос части продукта: если задвижки на всасывающей и нагнетательной линиях резервного насоса частично приоткрыты, а вентиль на байпасе обратного клапана открыт полностью, то часть жидкости будет циркулировать через резервный насос в направле­нии от линии нагнетания к линии всасывания.

Узел компримирования.На НПЗ и НХЗ используются компрес­соры следующих типов: поршневые (односторонние, оппозитные, угловые, вертикальные), роторные (винтовые, пластинчатые), осе­вые и центробежные (с электродвигателями или паровыми турби­нами). В состав узла компримирования входят: сепаратор на приеме компрессора, собственно компрессор, холодильники газа (межсту­пенчатые, если компрессор имеет несколько ступеней сжатия, и концевой), маслоотделители, масляные насосы, холодильники и сборники масла. С основным производством компрессор связан всасывающим и нагнетательным газопроводами и рядом вспомога­тельных трубопроводов. Кроме того, в узле компримирования име­ется ряд внутренних трубопроводов: система водяного охлаждения и смазки цилиндров, продувочные линии и трубопроводы для ава­рийного перепуска и сброса. Обвязка компрессоров основными и вспомогательными трубопроводами осуществляется в соответ­ствии с рекомендациями заводов-изготовителей.

Читайте также:  Комплект угловых двусторонних шестигранников jonnesway h10mb08s

Узел теплообменного аппарата.Теплообменные аппараты (теп­лообменники) классифицируют по характеру обменивающихся теплотой сред. Теплообмен может происходить между двумя жид­кими средами, между паром (газом) и жидкостью, между двумя га­зовыми средами. По принципу действия теплообменники подраз­деляют на аппараты непосредственного смешения и аппараты по­верхностного типа. Наиболее часто используемые на НПЗ и НХЗ

аппараты поверхностного типа подразделяют по способу компо­новки в них теплообменной поверхности на следующие виды: типа "труба в трубе"; кожухотрубчатые; пластинчатые; аппараты воздуш­ного охлаждения.

Кожухотрубчатые теплообменники, получившие широкое распро­странение в нефтеперерабатывающей и нефтехимической промыш­ленности, делят по конструктивным особенностям на аппараты: с неподвижными трубными решетками (тип Н), с температурным компенсатором на кожухе (тип К), с плавающей головкой (тип П), аппараты с U-образными трубами (тип У), испарители термосифонные с неподвижными трубными решетками (ИНТ) и с компенсатором на кожухе (ИКТ), аппараты для повышенных температур и давлений (ПК).

Аппараты типа Н применяются, когда разность температур ко­жуха и труб не превышает 50 °С, а аппараты типа К — в тех случаях, когда эта разность температур выше 50 °С. Чаще всего на НПЗ применяются аппараты с плавающей головкой, которая служит как для компенсации температурных удлинений, так и для облегчения чистки и разборки теплообменников.

В зависимости от назначения кожухотрубчатые теплообменни­ки подразделяют на холодильники (X), теплообменники (Т), кон­денсаторы (К), испарители (И).

Трубы в кожухотрубчатых. теплообменниках располагаются в решетке по вершинам квадратов и по вершинам треугольников. Теплообменные аппараты с расположением труб по вершинам тре­угольников при одном и том же диаметре кожуха имеют поверх­ность теплообмена на 10—15 % выше, однако чистка межтрубного пространства в этом случае затруднена. Для теплообменников, ра­ботающих на загрязненных средах, предпочтительнее аппараты с расположением труб по вершинам квадратов.

В аппаратах с U-образными трубами оба конца трубок разваль­цованы в одной трубной решетке. Эти аппараты применяются при работе на чистых средах.

В теплообменниках, предназначенных для утилизации теплоты отходящих продуктов, более загрязненные и склонные к полимери­зации и коксованию продукты направляют в трубное пространство, так как оно более доступно для очистки. В трубное пространство вводят также агрессивные жидкости, поскольку при таком решении из коррозионно-стойких материалов изготавливают не весь аппа­рат, а лишь часть его (трубный пучок и крышку).

В теплообменных аппаратах, где происходит конденсация паров или испарение жидкости, вещество, меняющее агрегатное состоя­ние, направляется в межтрубное пространство, а среда, которая агрегатного состояния не изменяет, — в трубное. При таком распре­делении потоков учитывается, что коэффициент теплоотдачи от ве­щества, изменяющего агрегатное состояние, выше, чем от движу­щегося, но не меняющего своего состояния. Направляя неконден­сирующиеся и неиспаряющиеся среды по трубам теплообменника и увеличивая при этом число ходов в трубном пространстве, повышают скорость движения продукта, а следовательно, и коэффици­ент теплоотдачи. Необходимо также иметь в виду, что при конден­сации и испарении гидравлическое сопротивление теплообменного аппарата обычно стремятся свести к минимуму, а потери напора в межтрубном пространстве меньше, чем в трубном. Это обстоя­тельство рекомендуется учитывать при проектировании установок, работающих при атмосферном давлении и под вакуумом.

Как правило, в теплообменниках на НПЗ и НХЗ должен быть обеспечен противоток теплообменивающихся сред. В противном случае будет иметь место значительное снижение эффективности теплообмена.

Подвод жидких продуктов следует осуществлять через нижние штуцеры, а вывод — через верхние. Такое решение обеспечивает полное заполнение жидкостью трубного и межтрубного про­странств. Если выполнить это требование невозможно, то на отво­дящих трубопроводах предусматривают гидравлические затворы в виде вертикальных петель ("утки"), которые препятствуют опо­рожнению аппарата; в верхнюю часть петли врезают воздушник с вентилем.

Различные варианты обвязки теплообменников, отличающиеся схемами регулирования температуры, приведены на рис. 18. Для сокращения потерь теплоты в окружающую среду теплообменники изолируют. В некоторых случаях изоляцию предусматривают для того, чтобы предотвратить ожог или обмораживание обслуживаю­щего персонала.

Рис. 18. Схемы обвязки теплообменников для случаев, когда расход охлаждаемого продукта после теплообменника может быть переменным (я) или постоянным (б) и когда охлаждаемый продукт — двухфазная среда (в):

/ — продукт на охлаждение; // — продукт на нагрев; III — парожидкостной поток; IV — откачка, К— ремонтный штуцер; VI — воздушник

Узел реактора.В нефтеперерабатывающей и нефтехимической промышленности применяются реакторы различных типов. Для проведения процессов в гомогенной газовой фазе (термический крекинг, пиролиз) служат реакторы, представляющие собой змее­вики трубчатых печей. В гомогенной жидкой фазе протекают про­цессы гидролиза и некоторые конденсационные процессы, для их проведения используются реакторы смешения и трубчатые реакто­ры вытеснения.

Широкое распространение на НПЗ и НХЗ получили процессы, которые проводятся в системе газ—твердый катализатор (каталити­ческий риформинг, гидроочистка дистиллятов, синтез углеводоро­дов из СО и Н2, дегидрирование этилбензола и др.).

На рис. 19 показана обвязка реактора гидроочистки масел и парафина. В реакторе имеется стационарный слой катализатора, сырье из печи подается в реактор восходящим потоком. Проектом предусмотрена паровоздушная регенерация катализатора. Обвязка реакторов технологическими трубопроводами в большинстве слу­чаев осуществляется без запорной арматуры.

Рис. 19. Схема обвязки реактора гидроочистки масел:

/— сырье в печь; II — сырье из печи; III —, гидрогенизат; IV — инертный газ; V— водяной пар; VI— воздух; VII— газы регенерации в дымовую трубу; VIII — отбор газа; IX — отбор жидкости; X — охлаждающая вода; XI — дренаж

Комментировать
0 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock detector