No Image

Установка для определения хпк

СОДЕРЖАНИЕ
0 просмотров
11 марта 2020

ХПК, что это такое?

Химическое потребление кислорода (ХПК) — показатель содержания органических веществ в воде, который показывает количество кислорода (или другого окислителя) затраченное на окисление органических соединений в пробе. Количественно ХПК выражается в миллиграммах потребленного кислорода на 1 л воды (мгО/л) и используется для оценки уровня органического загрязнения природных и сточных вод. В настоящее время ХПК считается одним из наиболее информативных показателей антропогенного загрязнения вод, а данные, получаемые в лабораториях, дают необходимые сведения о концентрациях загрязнений и их характере.

Однако при проведении исследований следует помнить, что не все органические соединения, которые могут присутствовать в воде, в одинаковой мере подвергаются реакции химического окисления. Поэтому всегда есть различия между теоретически возможным и получаемыми на практике значениями ХПК. Теоретическим значением ХПК называют количество кислорода (или другого окислителя в пересчете на кислород), необходимое для полного окисления присутствующих в образце органических соединений, а точнее всех способных окисляться элементов из состава органических компонентов. Так углерод теоретически количественно окисляется до CO2, а сера и фосфор (если они присутствуют в соединении) — до SO3 и P2O5. Азот превращается в аммонийную соль, а кислород, является основой для продуктов окисления, водород же переходит в структуру H2O или аммонийной соли.

Для чего нужно знать значения ХПК:
● для настройки технологического процесса очистки сточных вод на очистных сооружениях;
● для оценки качества воды в сфере водоподготовки и водоснабжения;
● для нормативной оценки сточной воды, сбрасываемой в водоёмы;
● в экологическом мониторинге объектов окружающей среды;
● в научных исследованиях (гидрология, гидробиология, гидрохимия, океанология, почвоведение);
● для контроля состояния воды в рыбоводстве.

Методы определения ХПК.

Титриметрический метод.
Классический метод определения химического потребления кислорода (ХПК) это из 2-х стадийный процесс:
● окисление пробы кипячением с реагентами в колбах с обратным холодильником на песчаной бане;
● получение аналитического результата титрованием остатка окислителя.

Фотометрический метод.
Сейчас одним из самых распространенных методов определения химического потребления кислорода (ХПК) является фотометрический метод по ГОСТ 31859-2012.
Методика подходит для определения ХПК в интервале значений от 10 до 800 мгО/дм во всех типах вод: питьевые и природные водные объекты, природные водные объекты и сточные воды. При анализе образцов воды с превышающими для данной методики показателями ХПК, исследуемую пробу разбавляют (не более чем в 100 раз). Мешающими факторами при проведении анализа относят наличие в пробе воды хлоридов (более 1000 мг/л и марганца (II) при его концентрации выше 50 мг/л). Мешающие факторы также устраняют разбавлением пробы.

Методика состоит из двух этапов:
1. Окисление пробы концентрированной серной кислотой, раствором бихромата калия при определенной температуре, в присутствии катализатора окисления — сульфата серебра и сульфата ртути (II) для снижения влияния хлоридов.
2. Фотометрическое определение ХПК по оптической плотности раствора при определённой длине волны в соответствии с полученным по стандарту градуированной зависимостью.

Диапазон значений, в которых может применяться данная методика:
● Значение ХПК образца находится в диапазоне от 10 до 160 мгО/л: измерение оптической плотности проводится при длине волны
440±20 нм.
● От 80 до 800 мгО/л — длина волны 600±20 нм.
● В области от 80 до 160 мгО/л при длине волны 440±20 нм или600±20 нм.

Для работы по данной методике понадобятся реактивы, термореактор и фотометр.

Конечно, реагенты можно приготовить самостоятельно в лаборатории, согласно методике анализа, однако проще воспользоваться готовыми тест-наборами в реакционных кюветах на 16 мм для фотометрического определения ХПК. Главное достоинство наборов в том, что не потребуется предварительное приготовление и хранение опасных реактивов, их дозирование и многие сопутствующие операции в лаборатории. Наборы соответствуют требованиям методик ГОСТ 31859‐12, ПНД Ф 14.1:2:4.210‐05, ПНД Ф 14.1:2:4.190‐03, а также ISO 15705:2002 «Качество воды. Определение ХПК. Метод герметичных пробирок». Реагенты метрологически обеспечены (МВИ 241.0276/RA.RU.311866/2016).

Для нагрева и термостатирования анализируемых проб при фиксированной температуре необходим термореактор, например TAGLER НТ-170 ХПК или термореактор лабораторный «ТЕРМИОН».
Данные термореакторы специально разработаны для работы с кюветами на 16 мм и позволяют осуществлять одновременный нагрев 16, 22, 29, 32 или 64 кювет с исследуемыми образцами, в зависимости от модели термореактора.

Тест-наборы разработаны так, чтобы подходить для работы на любомых фотометреах, оборудованных отсеком для цилиндрических кювет на 16 мм, например,: Флюорат‐02М, Эксперт‐003-ХПК, Экотест-2020-ХПК, HACH DR 900, Экохим ПЭ, TAGLER, UNICO, WTW, LEKI, Hanna Instruments.

Сравнение титриметрического и фотометрического подходов.

Титрование ХПК

Фотометрия ХПК

Длительность всего анализа небольшой серии проб (менее 10) может быть сравнима c фотометрическим методом: около 5 часов, но оператор в ходе анализа задействован почти все 5 часов.

При фотометрии с готовыми реагентами затраты времени оператора не более 30 минут.

При большой серии проб &mdash затраты времени при титриметрии растут пропорционально.

При фотометрии с готовыми реагентами затраты времени практически одинаковы и растут незначительно (что для 20, что для 50 проб)

Автоматизация титрования возможна только с использованием автотитратора. Стоимость автоматического титратора, например АТП-02 более 200 000 руб.

Приборная автоматизация. Стоимость фотометра «Экотест-2020-ХПК» в комплекте с термореактором , около 76 000 руб.

Большой расход реактивов: на каждую пробу их уходит в 10 раз больше, чем при фотометрии. Также появляется и большой объём опасных отходов.

Малый объём реактивов, подготовленный и развешанный производителем тест-наборов.

Рабочее место: одновременный анализ 5-6 проб занимает весь вытяжной шкаф.

При фотометрическом методе в один шкаф можно разместить более 80 проб на базе готовых реактивов.

Плохая применимость в полевых условиях.

Низкая точность и воспроизводимость.

Высокая точность и воспроизводимость.

Диапазон определяемых содержаний без разбавления пробы
4–50 мг/л.

Диапазон определяемых содержаний без разбавления пробы
10–160 или 80–1000 мг/л.

Метод определения химического потребления кислорода

Water. Method for determination of chemical oxygen demand

МКС 13.060.50
ТН ВЭД 220100000
220110000

Дата введения 2014-01-01

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0-92 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2-2009 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, применения, обновления и отмены".

Читайте также:  Буржуйка в гараж из газового баллона

Сведения о стандарте

1 ПОДГОТОВЛЕН Обществом с ограниченной ответственностью "Протектор" совместно с группой компаний "Люмэкс"

2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии (Техническим комитетом по стандартизации ТК 343 "Качество воды")

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 15 ноября 2012 г. N 42)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Госстандарт Республики Казахстан

Госстандарт Республики Беларусь

4 Настоящий стандарт соответствует международному стандарту ISO 15705:2002* Water quality — Determination of the chemical oxygen demand index (ST-COD) — Small-scale sealed-tube method (Качество воды. Определение индекса химического потребления кислорода. Маломасштабный метод герметичных пробирок)
________________
* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. — Примечание изготовителя базы данных.

Степень соответствия — неэквивалентная (NEQ).

Настоящий стандарт подготовлен на основе применения ГОСТ Р 52708-2007 "Вода. Метод определения химического потребления кислорода"

5 Приказом Федерального агентства по техническому регулированию и метрологии от 29 ноября 2012 года N 1618-ст межгосударственный стандарт ГОСТ 31859-2012 введен в действие в качестве национального стандарта Российской Федерации с 1 января 2014 года.

6 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе "Национальные стандарты", а текст изменений и поправок — в ежемесячном информационном указателе "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

1 Область применения

1 Область применения

Настоящий стандарт устанавливает метод определения химического потребления кислорода (далее — ХПК) в воде с использованием фотометрии. Метод распространяется на все типы воды (питьевые, природные, сточные) в диапазоне значений ХПК от 10 до 800 мгО/дм . Метод может быть использован для анализа проб воды с более высокими значениями ХПК при условии их разбавления, но не более чем в 100 раз.

К мешающим факторам при проведении определения относят наличие в пробе воды хлоридов при их содержании свыше 1000 мг/дм и марганца (II) при его содержании свыше 50 мг/дм . Мешающие факторы устраняют разбавлением пробы воды.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты:

ГОСТ 17.1.5.05-85 Охрана природы. Гидросфера. Общие требования к отбору проб поверхностных и морских вод, льда и атмосферных осадков

ГОСТ 1770-74 (ИСО 1042-83, ИСО 4788-80) Посуда мерная лабораторная стеклянная. Цилиндры, мензурки, колбы, пробирки. Общие технические условия

ГОСТ 4204-77 Реактивы. Кислота серная. Технические условия

ГОСТ 4220-75 Реактивы. Калий двухромовокислый. Технические условия

ГОСТ ИСО 5725-6-2003 Точность (правильность и прецизионность) методов и результатов измерений. Часть 6. Использование значений точности на практике*
________________
* В Российской Федерации действует ГОСТ Р ИСО 5725-6-2002 "Точность (правильность и прецизионность) методов и результатов измерений. Часть 6. Использование значений точности на практике".

ГОСТ 6709-72 Вода дистиллированная. Технические условия

ГОСТ 12026-76 Бумага фильтровальная лабораторная. Технические условия

ГОСТ ИСО/МЭК 17025-2009 Общие требования к компетентности испытательных и калибровочных лабораторий

ГОСТ 24104-2001 Весы лабораторные. Общие технические требования*
________________
* В Российской Федерации действует ГОСТ Р 53228-2008 "Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания".

ГОСТ 25336-82 Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры

ГОСТ 29169-91 (ИСО 648-77) Посуда лабораторная стеклянная. Пипетки с одной отметкой

ГОСТ 29227-91 (ИСО 835-1-81) Посуда лабораторная стеклянная. Пипетки градуированные. Часть 1. Общие требования

ГОСТ 30813-2002 Вода и водоподготовка. Термины и определения

ГОСТ 31861-2012 Вода. Общие требования к отбору проб

ГОСТ 31862-2012 Вода питьевая. Отбор проб

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены термины по ГОСТ 30813 и следующий термин с соответствующим определением:

химическое потребление кислорода; ХПК: Количество кислорода, потребляемое при химическом окислении содержащихся в воде органических и неорганических веществ под действием различных окислителей.

[ГОСТ 27065-86, статья 29]

4 Сущность метода

5 Средства измерений, вспомогательное оборудование, реактивы, материалы

Фотометр, спектрофотометр или фотометрический анализатор (далее — анализатор), снабженный адаптером для измерений оптической плотности воды и водных растворов, непосредственно находящихся в реакционных сосудах, в диапазоне длин волн от 400 до 700 нм.

Реакционные сосуды из термостойкого стекла (пробирки с завинчивающимися крышками вместимостью от 10 до 15 см ), предназначенные для обработки проб воды и измерений оптической плотности воды и водных растворов.

Нагревательный блок (термореактор), предназначенный для нагревания реакционных сосудов, обеспечивающий поддержание температуры содержимого реакционных сосудов (150±5) °С.

Перемешивающее устройство, например магнитная мешалка, эксикатор или ультразвуковая ванна.

Весы лабораторные по ГОСТ 24104 высокого или специального класса точности с ценой деления (дискретностью отсчета) 0,1 мг и наибольшим пределом взвешивания 220 г.

Колбы мерные по ГОСТ 1770 2-го класса точности вместимостью 25, 50, 1000 см .

Цилиндры мерные по ГОСТ 1770 2-го класса точности.

Стаканы химические термостойкие по ГОСТ 25336 вместимостью 1000 см .

Пипетки градуированные 2-го класса точности по ГОСТ 29227 или пипетки с одной отметкой 2-го класса точности по ГОСТ 29169, или дозаторы пипеточные с допускаемой предельной погрешностью дозирования ±5%.

Государственный (межгосударственный) стандартный образец (ГСО) бихроматной окисляемости с погрешностью аттестованного значения не более ±2%.

Вода дистиллированная по ГОСТ 6709.

Кислота серная по ГОСТ 4204, х.ч.

Сульфат ртути (II), х.ч. или ч.д.а.

Сульфат серебра, х.ч. или ч.д.а.

Калий двухромовокислый (бихромат калия) по ГОСТ 4220, х.ч. или стандарт-титр (фиксанал).

Читайте также:  Расширительный бак для бойлера гвс

Бумага фильтровальная лабораторная по ГОСТ 12026.

6 Отбор проб

Пробы воды отбирают по ГОСТ 31861, ГОСТ 31862, ГОСТ 17.1.5.05.

Для отбора, транспортирования и хранения проб воды используют емкости из стекла или полимерных материалов с навинчивающейся или пришлифованной пробкой. Емкости из полимерных материалов используют только для хранения замороженных проб воды при температуре минус 20 °С. Объем отбираемой пробы воды — не менее 100 см .

Отбор проб проводят в день выполнения анализа. Если пробы воды хранят до проведения анализа, то их подкисляют до рН меньше 2 разбавленной серной кислотой (см. 7.3.3), добавляя 10 см кислоты в расчете на 1000 см пробы. При этом пробы воды хранят при температуре от 2 °С до 8 °С не более 5 сут в защищенном от света месте.

Срок хранения замороженных до минус 20 °С проб воды — не более 1 мес.

Если проба содержит осадок, видимый невооруженным глазом, взвесь или нерастворенные органические вещества, например жиры, то перед отбором аликвотной порции пробы воды для обеспечения однородности, пробу интенсивно перемешивают, используя любое перемешивающее устройство (например магнитную мешалку, экстрактор или ультразвуковую ванну).

7 Порядок подготовки к проведению измерений

7.1 Подготовку анализатора к работе проводят в соответствии с руководством (инструкцией) по эксплуатации.

7.2 Подготовка реакционных сосудов

Из новой партии реакционных сосудов отбирают методом случайной выборки от 5% до 10% всего количества реакционных сосудов, но не менее трех штук. В каждый сосуд помещают по 5 см дистиллированной воды. Реакционный сосуд закрывают крышкой и проверяют на отсутствие видимых невооруженным глазом пузырьков воздуха в дистиллированной воде. При наличии пузырьков их удаляют легким постукиванием по стенке реакционного сосуда. Измеряют оптическую плотность дистиллированной воды в реакционном сосуде при длине волны 440 или 600 нм в зависимости от предполагаемого диапазона измерения значений ХПК (см. раздел 4).

Если измеренные значения оптической плотности дистиллированной воды в каждом реакционном сосуде отличаются не более чем на 0,01 единицы оптической плотности, то всю партию реакционных сосудов используют для проведения измерений ХПК.

Если измеренные значения оптической плотности дистиллированной воды в реакционных сосудах отличаются более чем на 0,01 единицы оптической плотности, то проводят сплошной контроль всей партии реакционных сосудов, отбирая для проведения измерений ХПК те из них, которые по значению оптической плотности отличаются друг от друга не более чем на 0,01 единицы оптической плотности.

Последующие проверки пригодности реакционных сосудов для измерений проводят с периодичностью не реже одного раза в месяц аналогично проверке новой партии реакционных сосудов.

7.3 Приготовление вспомогательных растворов

7.3.1 Раствор бихромата калия для измерения значений ХПК в диапазоне от 10 до 160 мгО/дм

Бихромат калия высушивают при (105±5) °С в течение 2 ч. Навеску 4,90 г высушенного бихромата калия растворяют в дистиллированной воде в мерной колбе вместимостью 1000 см и доводят объем раствора в колбе дистиллированной водой до метки. Молярная концентрация эквивалента бихромата калия составляет 0,1 моль/дм .

Допускается готовить раствор бихромата калия из стандарт-титра по прилагаемой к нему инструкции.

Срок хранения раствора — не более 6 мес.

7.3.2 Раствор бихромата калия для измерения значений ХПК в диапазоне от 80 до 800 мгО/дм

Бихромат калия высушивают при (105±5) °С в течение 2 ч. Навеску 24,52 г высушенного бихромата калия, растворяют в дистиллированной воде в мерной колбе вместимостью 1000 см и доводят объем раствора в колбе дистиллированной водой до метки. Молярная концентрация эквивалента бихромата калия составляет 0,5 моль/дм .

Допускается готовить раствор бихромата калия из стандарт-титра по прилагаемой к нему инструкции.

Срок хранения раствора — не более 6 мес.

7.3.3 Раствор серной кислоты молярной концентрации 4 моль/дм

В стеклянный стакан вместимостью 1000 см помещают около 700 см дистиллированной воды, осторожно добавляют при перемешивании 220 см концентрированной серной кислоты, охлаждают и доводят объем раствора в стакане дистиллированной водой до метки.

Срок хранения раствора — не более 12 мес.

7.3.4 Раствор серной кислоты молярной концентрации 1,8 моль/дм

В стеклянный стакан вместимостью 1000 см помещают 180 см дистиллированной воды, осторожно добавляют при перемешивании 20 см концентрированной серной кислоты.

Срок хранения раствора — не более 12 мес.

7.3.6 Раствор сульфата серебра в серной кислоте

Растворяют в стеклянной емкости 3,25 г сульфата серебра в 250 см концентрированной серной кислоты. Раствор перемешивают и оставляют в защищенном от света месте на 12 ч при комнатной температуре. Затем раствор вновь интенсивно перемешивают до полного растворения сульфата серебра.

Раствор хранят в емкости из темного стекла в условиях, исключающих воздействие прямых солнечных лучей, не более 12 мес.

7.3.7 Реагент для заполнения реакционных сосудов при измерении значений ХПК в диапазоне от 10 до 160 мгО/дм

Перед началом работы в реакционный сосуд пипеткой или дозатором вносят 0,5 см раствора бихромата калия (см. 7.3.1), осторожно добавляют 2,5 см раствора сульфата серебра (см. 7.3.6), затем 0,2 см раствора сульфата ртути (II) (см. 7.3.5). Допускается добавлять 0,05 г сухой соли сульфата ртути (II) вместо раствора сульфата ртути (II). Смесь осторожно перемешивают вращательными движениями или с использованием любого перемешивающего устройства, затем закрывают сосуд крышкой. Реакционные сосуды, заполненные реагентом, хранят в светонепроницаемой таре в защищенном от света месте при температуре от 2 °С до 8 °С.

Срок хранения заполненного реагентом реакционного сосуда — не более 12 мес. Содержимое реакционного сосуда перед применением перемешивают.

7.3.8 Реагент для заполнения реакционных сосудов при измерении значений ХПК в диапазоне от 80 до 800 мгО/дм

Реагент готовят по 7.3.7, используя раствор бихромата калия (см. 7.3.2).

Условия и срок хранения заполненного реагентом реакционного сосуда по 7.3.7. Содержимое реакционного сосуда перед применением перемешивают.

7.4 Приготовление градуировочных растворов

7.4.1 Приготовление основного раствора со значением ХПК 1000 мгО/дм

Основной раствор для измерения ХПК готовят из ГСО бихроматной окисляемости в соответствии с инструкцией по применению. Например при использовании ГСО бихроматной окисляемости с аттестованным значением ХПК 10000 мгО/дм , в мерную колбу вместимостью 50 см вносят мерной пипеткой 5 см ГСО бихроматной окисляемости и доводят объем в колбе дистиллированной водой до метки. Раствор стабилен в течение 1 мес при хранении в колбе с притертой пробкой при температуре от 2 °С до 8 °С.

Читайте также:  Шкаф из дерева своими руками чертежи

7.4.2 Приготовление градуировочных растворов для диапазона значений ХПК от 10 до 160 мгО/дм

В мерные колбы вместимостью 50 см мерными пипетками вносят 0,5; 1,0; 2,0; 3,5; 5,0; 8,0 см основного раствора (см. 7.4.1) и доводят объемы в колбах дистиллированной водой до метки. Значения ХПК приготовленных растворов составляют соответственно 10; 20; 40; 70; 100; 160 мгО/дм . Растворы используют в день приготовления.

7.4.3 Приготовление градуировочных растворов для диапазона значений ХПК от 80 до 800 мгО/дм

В мерные колбы вместимостью 25 см мерными пипетками вносят 2; 5; 10; 20 см основного раствора (см. 7.4.1) и доводят объемы в колбах дистиллированной водой до метки. Значения ХПК приготовленных растворов составляют соответственно 80; 200; 400; 800 мгО/дм .

Растворы используют в день приготовления.

7.5 Градуировка анализатора

Градуировку анализатора проводят в соответствии с руководством (инструкцией) по эксплуатации с использованием градуировочных растворов (см. 7.4.2 и 7.4.3) в зависимости от диапазона измеряемых значений ХПК. В качестве нулевой пробы используют дистиллированную воду. Градуировочные растворы и нулевую пробу воды подготавливают к измерениям аналогично анализируемым пробам (см. 8.5-8.7), измеряют значения оптической плотности растворов в реакционных сосудах при длинах волн (см. раздел 4) и устанавливают градуировочную зависимость оптической плотности растворов от значения ХПК (градуировочная характеристика), используя программное обеспечение к анализатору и/или программное обеспечение, предназначенное для обработки градуировочных зависимостей. Градуировочную характеристику признают стабильной, если абсолютное значение коэффициента корреляции, установленное программным обеспечением, не менее 0,98. Если коэффициент корреляции менее 0,98, градуировку анализатора повторяют.

Контроль стабильности градуировочной характеристики проводят не реже одного раза в три месяца в соответствии с периодичностью, установленной в Руководстве по качеству лаборатории*, с использованием не менее двух заново приготовленных градуировочных растворов с различными значениями ХПК (см. 7.4.2 и 7.4.3). Контроль стабильности градуировочной характеристики проводят также при смене партии реагента.

* Документ в информационных продуктах не содержится. За информацией о документе Вы можете обратиться в Службу поддержки пользователей. — Примечание изготовителя базы данных.

8 Порядок проведения измерений

8.3 Проводят визуальный осмотр реакционных сосудов и их содержимого. При обнаружении в сосуде трещин, повреждений любого типа или признаков зеленой окраски раствора, реакционный сосуд не используют.

8.4 Включают нагревательный блок, нагревают его до 150 °С и выдерживают при этой температуре не менее 10 мин.

8.6 На реакционный сосуд плотно навинчивают крышку и перемешивают его содержимое, осторожно переворачивая несколько раз. Вытирают внешнюю поверхность реакционного сосуда фильтровальной бумагой. Помещают реакционный сосуд в нагревательный блок и выдерживают в течение (120±10) мин.

8.7 Осторожно, например специальными захватами, вынимают реакционные сосуды из нагревательного блока и охлаждают при комнатной температуре до температуры не выше 60 °С. Перемешивают содержимое, переворачивая реакционные сосуды. Затем охлаждают реакционные сосуды до комнатной температуры. Реакционные сосуды, в которых произошло визуально заметное уменьшение объема содержимого, для измерений не используют. Анализ пробы воды в этом случае повторяют (см. 8.1-8.6).

8.8 Если раствор после охлаждения прозрачен, то измеряют оптическую плотность пробы воды при рабочей длине волны 440 нм, используя реагент (см. 7.3.7), или при 600 нм, используя реагент (см. 7.3.8).

Если раствор мутный, то ему дают отстояться, затем измеряют его оптическую плотность как описано выше. Если после отстаивания раствор остается мутным, то анализ пробы воды повторяют, предварительно разбавив ее дистиллированной водой.

9 Правила обработки результатов измерений

где — объем пробы воды после разбавления, см ;

— объем аликвотной порции пробы воды до разбавления (см. 8.1), см .

где — максимальное значение ХПК из двух параллельных определений (см. 9.1), мгО/дм ;

— минимальное значение ХПК из двух параллельных определений (см. 9.1), мгО/дм ;

— относительное значение предела повторяемости по таблице 1, %.

Таблица 1

Определение ХПК

Производитель: SELECTA
Описание: В соответствии со стандартом ЕСС 77-004. С применением обратного холодильника.

Свойства
Состоит из нагревателя на 6, 12 или 20 проб, программного блока, стеклянной посуды и штативов. Равномерный нагрев всего блока и образцов. Автоматическая регуляция температуры и длительности процесса.

Блок для определения ХПК состоит из:
1 металлического нагревателя
1 электронного цифрового регулятора температуры и времени
1 штатива для пробирок.
1 подставки для холодильников.
Пробирок для ХПК с отверстиями 29/32
Холодильников для ХПК.

Выключатель питания ON/OFF с подсветкой.
Регулятор нагрева от 0 до 100%.

Этап: Исследование

Производитель: SELECTA
Описание: Свойства
Дисплей для отображения времени, температуры и выполняющейся программы. Температура от 45 до 450°С. Память: 10 программ из 5 ступеней. Максимальная продолжительность стадии 600 минут, температурный датчик К типа. Звуковой сигнал и светящийся индикатор по окончании последнего цикла. Сигнализация при неисправности термодатчика. Разъем для нагревательного блока на задней части блока. Подключение на задней панели.

Панель управления:
Выключатель питания ON/OFF.
Цифровой дисплей температуры
Кнопка установки температуры.
Кнопка увеличения
Кнопка старта.
Кнопка остановки.
Кнопка уменьшения.
Кнопка установки времени.
Дисплей времени и номера программы
Кнопка выбора программы.

Применение
Для анализов на химическое наличие кислорода DQO, фосфора в целом, хрома в целом и различных анализов на разложение образцов воды и грязи.

Характеристики
Металлический корпус покрыт эпоксидной краской высокой стойкости к химическим реагентам и коррозии. Термостатический блок из алюминия, что обеспечивает оптимальную термическую стабильность при всех выбранных температурах и прекрасную воспроизводимость. Имеет звуковое оповещение об окончании цикла с автоматическим выключением.

Термореактор DQO. ECO-8
Сухой термореактор для 8 туб ∅ 16мм и 1 тубы для разложения ∅ 22 мм. Позволяет выбор 5-ти различных рабочих температур – 70, 100, 120, 150, 160 °С и 4-х временных циклов – 30, 60, 120 мин. и без ограничения. Термостатический блок имеет защитный колпак для большей безопасности во время работы.

Термореактор цифровой DQO. ECO-16
Сухой термореактор для 14 туб ∅ 16мм и 2 туб для разложения ∅ 22 мм. Оборудован микропроцессором и цифровым дисплеем LCD, который позволяет программировать температуру и время реакции в очень широких пределах, с высокой точностью и повторяемостью. Скомбинированный с Фотометром М-200 представляет собой комплект оборудования для проведения высокоточной серии анализов.


Этап: Исследование

Комментировать
0 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock detector